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Abstract: Dead wood such as coarse dead wood debris (CWD) is an important component in
natural forests since it increases the diversity of plants, fungi, and animals. It serves as habitat,
provides nutrients and is conducive to forest regeneration, ecosystem stabilization and soil protection.
In commercially operated forests, dead wood is often unwanted as it can act as an originator of
calamities. Accordingly, efficient CWD monitoring approaches are needed. However, due to the
small size of CWD objects satellite data-based approaches cannot be used to gather the needed
information and conventional ground-based methods are expensive. Unmanned aerial systems
(UAS) are becoming increasingly important in the forestry sector since structural and spectral features
of forest stands can be extracted from the high geometric resolution data they produce. As such,
they have great potential in supporting regular forest monitoring and inventory. Consequently,
the potential of UAS imagery to map CWD is investigated in this study. The study area is located in
the center of the Hainich National Park (HNP) in the federal state of Thuringia, Germany. The HNP
features natural and unmanaged forest comprising deciduous tree species such as Fagus sylvatica

(beech), Fraxinus excelsior (ash), Acer pseudoplatanus (sycamore maple), and Carpinus betulus (hornbeam).
The flight campaign was controlled from the Hainich eddy covariance flux tower located at the
Eastern edge of the test site. Red-green-blue (RGB) image data were captured in March 2019 during
leaf-off conditions using off-the-shelf hardware. Agisoft Metashape Pro was used for the delineation
of a three-dimensional (3D) point cloud, which formed the basis for creating a canopy-free RGB
orthomosaic and mapping CWD. As heavily decomposed CWD hardly stands out from the ground
due to its low height, it might not be detectable by means of 3D geometric information. For this
reason, solely RGB data were used for the classification of CWD. The mapping task was accomplished
using a line extraction approach developed within the object-based image analysis (OBIA) software
eCognition. The achieved CWD detection accuracy can compete with results of studies utilizing
high-density airborne light detection and ranging (LiDAR)-based point clouds. Out of 180 CWD
objects, 135 objects were successfully delineated while 76 false alarms occurred. Although the
developed OBIA approach only utilizes spectral information, it is important to understand that the
3D information extracted from our UAS data is a key requirement for successful CWD mapping as
it provides the foundation for the canopy-free orthomosaic created in an earlier step. We conclude
that UAS imagery is an alternative to laser data in particular if rapid update and quick response is
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required. We conclude that UAS imagery is an alternative to laser data for CWD mapping, especially
when a rapid response and quick reaction, e.g., after a storm event, is required.

Keywords: unmanned aerial system (UAS); RGB; structure from motion (SfM); deciduous forest;
coarse dead wood debris (CWD); OBIA; line feature detection; point cloud analysis

1. Introduction

1.1. Role and Mapping of Dead Wood

Dead wood has been recognized as an important component of natural forests since it enriches
forest ecosystems in terms of plant, fungus, and animal diversity [1–6]. It provides micro-habitats for
several species and nutrients through the contribution of organic matter. Moreover, it is beneficial to
forest regeneration, ecosystem stabilization, soil protection, and carbon sequestration [1,5,6]. However,
in commercially used and managed forests, which are often characterized by a low diversity of tree
species, dead wood can cause economic losses since it can be the originator of calamities such as insect
outbreaks or other diseases [7].

In European natural forests, the stock of dead wood ranges from 50 up to 300 m3/ha [1,5,6].
Dead wood arises from trees or tree components and their death due to old age, windthrow, snow-break,
fire, insect attacks, fungal infestation, bark injury, or logging activities [6]. Accordingly, the forms of
appearance of above ground dead wood are diverse and comprise standing dead trees (snags), downed
trees (logs), stumps, branches, and twigs [6,8]. Above ground dead wood is often categorized into fine
dead wood debris (FWD) and coarse wood debris (CWD) using a threshold of 10 cm, which refers
to the diameter of the dead wood components [8]. Most studies on dead wood assessment focus on
CWD [2–5,8–14]. Dead wood goes through various stages of decay until it is completely decomposed.
Albrecht (1991) [6] distinguishes four stages of decay: fresh dead wood, beginning decay, advanced
decay, and heavily decomposed. During the decomposition process, the color and three-dimensional
(3D) structure of dead wood change, which has to be considered when developing dead wood
assessment strategies [9,15]. For example, for heavily decomposed CWD, a 3D structure-based
separation of dead wood and ground might become unfeasible [11,12,15,16].

Dead wood mapping can be conducted at the area or object level. While the latter aims at the direct
mapping of individual downed stems, snags and other dead wood debris, area-based methods provide
averages of dead wood for a given region. Traditional ground-based techniques use a suitable sampling
strategy to make projections for an entire area [1–3,5]. Other area-based approaches involve predictors
to model the total amount of dead wood for an area. The direct mapping of individual dead wood
objects provides details on the spatial distribution of dead wood, which in turn is a requirement for
several ecological and silvicultural applications [7,15]. Regardless of whether traditional ground-based
inventories or remote sensing methods are used for the direct mapping of dead wood, the wall-to-wall
detection of all individual dead wood objects can be considered a complex task as it is impeded by two
major difficulties:

1. Ground-based campaigns suffer from challenging carrier phase differential global navigation
satellite system (CDGNSS) conditions. Thus, the subdecimeter positioning accuracy needed to
survey CWD (especially when campaign data are used as reference for remote sensing-based
inferences) can hardly be achieved. Alternatively, positioning based on tachymetry could be
carried out. However, this would entail a great deal of effort in forest environments.

2. The use of remote-sensing methods is limited as CWD objects are too small to be detected via
satellite-borne data. Also, the forest canopy and potentially the undergrowth prevent the visibility
of the CWD objects. Consequently, previous research has mainly focused on the use of active
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systems such airborne light detection and ranging (LiDAR) [7–9,12,14–16] or terrestrial laser
scanning (TLS) [8,11,17,18].

1.2. Previous Studies on Dead Wood Mapping

1.2.1. Area-Based Dead Wood Mapping Using Airborne Light Detection and Ranging (LiDAR) Data

Area-based approaches are less demanding with respect to the required 3D point density
and several studies report the successful use of LiDAR data for area-based dead wood
assessments [9,10,19–24]. For example, Pesonen et al. [24] utilized airborne LiDAR data to predict
downed and standing CWD in the Koli National Park in eastern Finland. The authors used
height-intensity metrics as predictors and reported that LiDAR-based estimates for downed CWD are
more accurate than the estimates of ground-survey based characteristics of living trees. In another
study Pesonen et al. [9] compared several ground based sampling methods for CWD assessment
including the usage of airborne LiDAR data as auxiliary information. The inclusion of LiDAR-based
probability layers was found to be promising and could increase the efficiency of CWD inventories.
Bright et al. [22] used a random forest algorithm to predict living and dead tree basal area derived from
LiDAR-derived metrics. The intensity was shown to be an important discriminator between dead and
living trees. Sumnall et al. [23] revealed that the season of LiDAR data acquisition (leaf-on vs. leaf-off)
had great impact on dead wood detection and the differentiation of decay stages for both snags and
logs. Tanhuanpää et al. [10] used bi-temporal airborne LiDAR data to predict downed CWD in an
urban boreal forest close to Helsinki, Finland. The prediction was based on detected canopy changes
at the individual tree level as well as a set of allometric equations. Accordingly, trees missing in the
second acquisition were related to CWD downed in between both LiDAR flights.

1.2.2. Object-Based Dead Wood Mapping Using Airborne LiDAR Data

Direct mapping of individual dead wood objects demands a sufficient sampling rate in terms of
either laser pulses per area or geometric resolution if imaging methods are used. With respect
to airborne LiDAR data, high-density point clouds (>20 pts/m2) are frequently used to detect
downed logs. In [8] the authors found that the minimum size of the detectable CWD depends
on point cloud density. As previously mentioned, one difficulty with direct mapping of individual
downed CWD is the generation of valid reference data [12] since achieving accurate positioning
in forests is complicated. Positional errors frequently exceed the diameters of CWD by the order
of one or two magnitudes [7,11,13,15,16]. Thus, in several studies reference data are generated
through manual labeling of CWD based on the same laser or optical data used for automatic CWD
delineation [11,14,16,18,25,26].

Positional errors in the reference data complicate the validation of CWD mapping results
as suitable strategies for linking mapped CWD and reference data need to be developed [7,11–13].
Some studies manually assess map quality and thus introduce a certain degree of subjectivity [7,15,16,25].
Nevertheless, several of them demonstrate the potential of airborne LiDAR data for direct mapping
of individual dead wood objects. Blanchard et al. [16] utilized rasterized multi-return LiDAR data
as input for a rule-based object-based image analysis (OBIA) approach in order to classify downed
logs, canopy cover, and the ground in California, USA. Their test site comprised bare ground, shrubs
and isolated patches of sparse conifer forests. The authors achieved a classification accuracy of 73%.
Muecke et al. [15] used airborne LiDAR data to detect downed trees with a stem diameter >30 cm on
a site in Eastern Hungary (Nagyerdo). The site was covered with deciduous forest and the LiDAR
data were collected during leaf-off conditions. The authors rasterized terrain-normalized LiDAR data
and created a clean map of downed wood by removing height values between 2 and 7 m. Downed
logs were identified by means of a classification scheme. The accuracy was assessed using expert
knowledge. The authors reported a completeness of 75% and a correctness of 90%. Similar work was
conducted by Leiterer et al. [14]. The study aimed at the LiDAR-based detection of downed stems



Remote Sens. 2020, 12, 3293 4 of 24

with a diameter >30 cm at sites featuring mixed (Germany, Uckermark) or deciduous forest (Laegern,
Switzerland). Overall, 70% of the logs were at least partially detected. Lindberg et al. [13] developed
a line template-matching method to detect storm-felled trees in a managed hemiboreal forest in the
south west of Sweden. The approach made direct use of the LiDAR-based point cloud. Only returns
between 0.2 and 1.0 m above ground were considered for the line template matching; 41% of the ground
surveyed downed stems could be automatically linked to the LiDAR-derived stems. The reported
overdetection rate using the proposed LiDAR approach amounts to 30%. Nyström et al. [7] used the
same dataset to detect windthrown trees but developed a slightly different method. Again, a template
matching approach was applied. The authors used a 10 cm resolution terrain-normalized height
model of the forest floor comprising the windthrown trees. The templates had a rectangular shape and
featured different widths (0.3–0.9 m) but equal lengths (8 m). The achieved accuracy was similar to the
results achieved by Lindberg et al. [13]. Polewski et al. [12] applied a normalized cut approach which
merged short segments into whole stems to detect fallen trees in the Bavarian Forest National Park,
Germany. The main tree species occurring within the test site were Norway spruce and European
beech. The LiDAR data were recorded under leaf-off conditions. For model training, simulated data
of downed logs was used. The temporal offset between reference data and LiDAR data as well as
overstory cover complicated the validation and only stems visible in the LiDAR data were used for
accuracy assessment. The authors reported a detection rate between 75% and 85% for an overstory
cover of 30-40%. The overdetection rate was below 20%.

1.2.3. Object-Based Dead Wood Mapping Using Terrestrial Laser Scanning (TLS) Data

As occlusion by overstory coverage or limitations originating from insufficient point density in
airborne LiDAR data have been recognized as restrictive factors, some studies assess the potential of
TLS data for CWD mapping. Polewski et al. [18] developed a cylinder detection framework for the
automatic detection of downed logs. The perceptibility of cylindrical shapes in 3D point clouds sets
minimum requirements in terms of point density which could be achieved using TLS scans featuring
densities between 800 and 44,000 pts/m2. The authors tested the approach at three different plots in the
Bavarian Forest National Park. The reference data was manually digitized from the TLS point clouds.
The study revealed a strong impact of the plot characteristics on detected tree length completeness and
error rate. For an error rate of 0.2 the completeness ranged from 0.4 to 0.75. Yrttimaa et al. [11] suggest
another method involving cylinder fitting. The workflow furthermore involves the rasterization of
the point cloud, raster image segmentation and classification, and the delineation of the position
of the logs. The study area is located in Evo, Finland and features Scots pine, Norway spruce, and
birch. The TLS data were acquired at 20 sample plots, with each plot being covered by five scans.
Even though reference data were collected in the field, validation was accomplished based on visual
interpretation of the TLS data. Overall, 68% of the dead wood was automatically detected.

1.2.4. Object-Based Dead Wood Mapping Using Optical Data

Occlusion by overstory coverage is the major obstacle for employing high-resolution optical data
to detect downed CWD. Indeed, some studies are concerned with the detection of individual snags
using airborne optical data [27–31]. Butler and Schlaeper [30] used color infrared (CIR) aerial photos to
detect spruce snags in mountain forests in Switzerland. The detection was conducted manually and
required expert knowledge. In total, 82% of the snags were identified. Dunford et al. [29] collected
red-green-blue (RGB) imagery by means of the paraglider drone “Pixy” over a Mediterranean riparian
forest in southeastern France. Snags were classified using pixel-based and object-based classification.
The authors report errors of omission and commission of 80% and 65%, respectively. Pasher and
King [28] used CIR airborne optical for canopy dead wood detection in a temperate hardwood forest
in Gatineau Park, Canada. The direct detection approach involved Iterative Self-Organizing Data
(ISODATA) clustering, object-based classification, and spectral unmixing. The validation revealed a
detection accuracy of 90% for the control site. A recent publication by Krzystek et al. [27] reports on
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large scale mapping of snags in Šumava National Park and Bavarian Forest National Park. The entire
site covers an area of 924 km2. Due to bark beetle attacks, a great part is characterized by dead wood
such as snags. The separation of dead standing trees and living trees involved multispectral aerial
imagery and geometric features derived from LiDAR data. The authors used random forests and
logistic regressions as classifiers and report an overall accuracy of above 90%.

The use of optical data for downed CWD detection requires free sight of the objects.
This requirement can be met if the forest considered is very sparse or if there are large gaps in
the forest canopy. Pirotti et al. [32] investigated high-resolution RGB imagery for damage assessment
caused by windthrow in the Tuscany Region, Italy. Due to a heavy storm, a great percentage of forest
was damaged resulting in large patches of logs. Three different machine learning approaches were
tested. The authors report a high agreement (R2 = 0.92) between field measurements and classification
results. Jiang et al. [25] applied semantic segmentation on airborne CIR imagery for log detection
in the Bavarian Forest National Park, Germany. The deep learning approach is implemented in the
DenseNet framework. Training and test data were obtained from manual labelling of the CIR imagery.
In general, only visible logs were considered. Although the illustrations provided suggest that parts of
the forest are very sparse, a considerable percentage of logs might be occluded. The authors report
almost no false positive alarms and recall rates of 0.95 and 0.68.

A feasible strategy to mitigate occlusion of the forest floor and thus of downed CWD in optical
imagery is the use of wide aperture angles in conjunction with great overlap of the individual images.
Thus, sensing canopy gaps from different angles will enable the view of different patches of the ground.
These patches might be connected to one orthomosaic created from structure from motion (SfM)
processing (see following paragraph). Furthermore, the canopy gap fraction might be increased in
deciduous forest during leaf-off conditions. Recent technical developments with respect to unmanned
aerial systems (UAS) permit the acquisition of this kind of imagery. Also, the geometric resolution
is sufficiently high for CWD mapping. Inoue et al. [26] test UAS data for the detection of downed
trees in a dense deciduous broadleaved forest in the Ogawa Forest Reserve in Kitaibaraki, Japan.
The helicopter-like UAS (RMAX-G1) generated RGB images with a geometric resolution of 0.5–1.0 cm.
As the data were recorded during leaf-off conditions, >80% of the logs could be manually identified.
This study reveals that there is a need for further research in terms of data acquisition and processing.

1.3. Unmanned Aerial Systems (UAS) Imagery and Structure from Motion (SfM) for Small-Scale Mapping
Tasks: Potential and Principles

The above studies highlight the great potential of UAS for CWD mapping. UAS have appeared in
the past decade as a novel form of Earth observation (EO) data that can bridge the gap between in-situ
and far range EO data and, thus, enable development of improved data upscaling approaches [33].
Often UAS are equipped with optical camera systems that provide ultra-high-resolution imagery
(i.e., centimeter scale), which is one precondition for CWD mapping. Digital images can be recorded
nearly anytime and at low cost. Flight settings and imaging parameters can be adapted according to the
needs of the application in terms of spectral channels, image overlap, illumination conditions and/or
geometric resolution. The high flexibility, scalability, and ease of use of UAS has led to an increased
usage of UAS-borne data in many fields of application where high spatial resolution is needed such as
structural health monitoring [34], forestry [35], archeology [36], costal mapping [37] or topographic
surveying [38]. Lately, this usage has been further pushed by the emergence of low-cost consumer
UAS with even easier operation. Such drones have also triggered the widespread use of UAS data
for citizen science or humanitarian crowdsourcing organizations such as the UAViators [39]. Besides
ultra high-resolution imagery, the ability to acquire 3D information is of particular interest for forestry
research since it enables the separate investigation of different elevation layers (as demonstrated in
this study).

Prevalent photogrammetric processing chains (commonly summarized as SfM) exist to generate
3D point clouds and orthomosaics based on overlapping UAS imagery [40]. The SfM approach
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employs stereoscopic principles [40]. SfM permits the simultaneous approximation of constant imaging
properties, the motion of an individual camera, and 3D object characteristics. It comprises three main
phases: (1) recognition of noticeable image features/points in overlapping images [41,42]; (2) estimation
of an initial imaging geometry and the corresponding sparse 3D point cloud [43,44]; and (3) optimization
of the model as a whole [45]. Eventually, the refined sparse 3D point cloud can be densified by applying
dense stereo matching approaches [46]. The 3D positional accuracy of point clouds and orthomosaics
derived from UAS image data depends on the UAS survey parameters (flight pattern, camera viewing
angle, distribution of ground control points, GCPs) and the SfM processing details [38,47,48]. For a
weak network of tie points, as commonly achieved with parallel (i.e., airborne campaign-like) flight
tracks and nadir images, systematic errors such as doming of the 3D model can occur [47]. These
errors can either be minimized by installing sufficient and well-distributed GCPs or by implementing
more comprehensive flight patterns including oblique images [38,47,48]. Thereby, systematic errors
can be avoided even with inexpensive equipment. Thanks to current technological developments,
such constraints can be overcome by next generation UAS even with simple flight patterns weak tie
point networks. These systems comprise hardware for real time kinematic (RTK)-based positioning
and permit positional accuracies better than 5 cm [49,50], thereby allowing for accurate and reliable
direct georeferencing. In addition, systematic geometric errors such as doming can be avoided [48,51].

1.4. Scope and Remainder of This Publication

The introduction clarified the great importance of CWD in natural and commercial forests. It was
also shown which difficulties and challenges still exist regarding CWD mapping. Furthermore,
the literature review reveals that most of the studies on CWD mapping have been conducted in boreal
and hemiboreal forests and employ laser data. Although UAS imagery might have a great potential for
CWD mapping, as discussed in the previous sections, there is a lack of studies that investigate the
potential of such data for CWD mapping. Consequently, this study addresses these open questions.
The overall goal of this research is to develop and validate a cost-effective and flexible approach to
CWD mapping for deciduous forests that can be used to support forest inventories. We suggest a
novel end-to-end approach using UAS optical imagery and SfM to map CWD underneath a forest
canopy. The workflow exploits the three-dimensionality of the SfM point cloud to eliminate elements
preventing an unobstructed vision of the forest floor.

The remainder of the publication is organized as follows: Section 2 presents the materials and
methods, including a description of the test site, field work, data, UAS data processing, reference data
collection, methodological development, and the framework for accuracy analysis. Section 3 lays
out the results of this research, including the analysis of the achieved mapping accuracies. Section 4
is dedicated to the discussion of the results obtained, which is followed by concluding remarks in
Section 5.

2. Materials

2.1. The Supersite ‘Huss’ Within the Hanich National Park (HNP)

The Hainich National Park (HNP) is located in the center of Germany (Figure 1). It was established
on 31 December 1997. Since 25 June 2011, the park is a UNESCO World Heritage Site of primeval beech
forests of the Carpathians and old beech forests in Germany. Although it comprises a rather small area
(75 km2), the HNP plays an important role in the preservation and protection of beech-dominated
ecosystems. The beech forests of the park thrive on soils that have developed from limestone of the
Middle Trias era.
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Figure 1. Overview of the study area. The Hainich National Park is located in the center of Germany.
The Huss supersite is part of the core area of the park. The satellite imagery in the backdrop is taken
from Google Earth (2020). The coordinate system used for all figures of this paper is universal transverse
mercator (UTM), zone 32N, ellipsoid WGS84.

The study site “Huss” (Figure 2) has already been the focus of many forest ecological
investigations and is equipped with a multitude of instruments for various long-term measurements
and experiments [4,31,52–56]. It is located in the core area of the HNP near a flux tower operated by the
University of Göttingen. The site covers an area of 28.2 ha. It is dominated by beeches (Fagus sylvatica)
but comprises a great diversity of tree species, such as ash (Fraxinus excelsior), alder (Aldus glutinosa),
sycamore maple (Acer pseudoplatanus), hornbeam (Carpinus betulus), wych elm (Ulmus glabra), common
and sessile oak (Quercus robur, Quercus petraea), and chequers (Sorbus torminalis). The forest is
unmanaged and home to a wide variety of flora, fungi, and fauna of around 10.000 species. Prominent
examples of animals are European wildcats, various bat species, woodpeckers, roe deer, and more than
70 beetle species [56]. During the years 2018 and 2019, the Hainich forest experienced serious droughts
and it received only 60% of the amount of precipitation relative to the long-term mean. This led to a
widespread and noticeable damage of the beech population.
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Figure 2. The Huss site in September 2019. The dimensions of the site are approximately 550 m × 550 m.
However, its footprint is not exactly square, resulting in an area of 28.2 ha. Only deciduous tree species
occur. The gaps in the canopy are caused by natural processes such as wind throw or the death of old
tree individuals etc. Since the forest is not managed, the dead wood remains on the forest floor until
it decomposes completely. The dense canopy hardly permits woody undergrowth. Displayed data:
Orthomosaic based on unmanned aerial systems (UAS) imagery. The data shown in this figure were
acquired under leaf-on conditions on 20 August 2019 and are solely used for visualization purposes.

2.2. Field Work: UAS Mission and Check Point Surveying

We used the RTK version of the DJI (Da-Jiang Innovations Science and Technology Co., Ltd)
Phantom 4 Pro to capture the UAS imagery. This UAS allows for accurate real-time positioning in the
order of centimeters (see Table 1) if correction data from a reference station is received. For this campaign,
the German satellite positioning service SAPOS was available. The correction data were received via a
mobile internet connection. The nearest SAPOS reference station is “Muhlhausen 2” with an average
distance of 14.5 km. The correction signal was persistently received during the flights. The Phantom
4 Pro RTK features a camera with a 1” CMOS (complementary metal-oxide-semiconductor) sensor
and a mechanical shutter. The field of view of the camera is 84◦. The 3D RTK coordinate of the image
center is stored in exchangeable image file format (EXIF) format along with several other parameters.
For more UAS specifications see Table 1.
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Table 1. Specifications of Da-Jiang Innovations Science and Technology Co., Ltd’s (DJI) real time
kinematic (RTK) version of the Phantom 4 Pro according to [49]. Abbreviations: JPEG = Joint
Photographic Experts Group; EXIF = exchangeable image file format (EXIF), CDGNSS = carrier-phase
differential global navigation satellite system.

UAS Characteristics DJI Phantom 4 Pro RTK

Frequencies used for RTK

GPS: L1/L2
GLONASS: L1/L2

BeiDou: B1/B2
Galileo: E1/E5a

Positioning accuracy
Horizontal: 1 cm + 1 ppm

Vertical: 2 cm + 1 ppm

Image sensor
DJI FC6310R (Bayer), 1" CMOS

8.8 mm/24 mm (35 mm equivalent)
No. of pixels/ pixel size 5472 × 3648 / 2.41 µm × 2.41 µm

Field of view 84◦

Mechanical shutter 8−1/2000 s
Data format JPEG, EXIF with 3D RTK CDGNSS location

The UAS campaign was conducted in the leaf-off season in early spring 2019 (Table 2). During
the flights, the sky was overcast. This resulted in diffuse and consistent illumination conditions.
Accordingly, unwanted effects such as hard shadows and strong illumination differences between
the forest canopy and forest floor were avoided. The wind speed was very low so that hardly any
movements of the trees were observed during the flights. A simple airborne campaign-like flight
pattern with parallel flight lines was chosen. To increase the probability of obtaining data from the
forest floor, vastly overlapping nadir images were acquired. Motion blur was avoided by setting the
flight speed, shutter speed (fixed to 1/320 s), and spatial resolution to the values reported in Table 2.
With respect to the aperture, the exposure value was set to –0.3. Take-off and landing were operated
from the flux tower platform close to the Huss site. The platform enabled the visual observation of the
UAS throughout the mission.

Table 2. UAS mission and acquisition parameters. Wind speed was measured at the weather
station Weberstedt/Hainich located 5 km to the NE of the test site. The mission footprint (i.e.,
the entire area covered by the UAS campaign) is noticeably larger than the Huss site because the flight
planning accounted for a buffer surrounding the site. Abbreviation: ISO = International Organization
for Standardization.

Parameter Setting

Date
Time (UTC+1) of first shot

2019/03/24
10.36 am

Wind speed 0.5–1.0 ms−1

Clouds overcast (8/8)
Mission duration 25 min (2 batteries)

No. images 578
Image overlap (front/side) 85% / 80%

Flight speed 5 ms−1

Shutter priority yes (1/360 s)
Distortion correction yes

Gimbal angle –90◦ (nadir)
Flight altitude over tower 100 m

ISO sensitivity ISO400
Aperture F/5.0–F/5.6 (exposure value −0.3)

Geometric resolution (ground) 4.18 cm
Area covered 0.579 km2
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Due to the application of direct georeferencing during the SfM processing, GCPs were not needed.
Nevertheless, five check points were equally distributed at glades of the Huss site to allow for evaluating
the positional accuracy of the processed orthomosaic and digital elevation model (DEM). To identify
and locate the check points precisely in the UAS imagery, 50 cm × 50 cm Teflon panels featuring a black
cross to mark the panel center were utilized. The positions of the Teflon panels were measured using
survey-grade equipment. More specifically, a ppm10xx-04 full RTK CDGNSS sensor was employed
in combination with a Novatel Vexxis GNSS L1/L2-Antenna [57]. Each check point was surveyed
50 times. The root-mean-square error (RMSE) (computed separately for x, y, z) was below 2 cm for all
check points. In this study, the averaged positions of the 50 measurements were used.

2.3. Light Detection and Ranging (LiDAR) Data

For the terrain normalization of the SfM model (see Figure 3 for workflow), LiDAR data made
openly available by the Thuringian land surveying office were used [58]. The LiDAR data were acquired
in February 2017 and contained returns classified into ground and non-ground points. The average
density of the ground points was 8 pts/m2. According to the metadata provided by the Thuringian
land surveying office, the horizontal and vertical accuracy of the LiDAR point clouds were 0.15 m and
0.09 m, respectively.

 

 

 

Figure 3. The overall workflow developed and applied in this study. Color coding: Grey = input data,
white = processing steps, light blue = intermediate products, dark blue = final products. The reference
data for validation was digitized using the canopy-free raster data.
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3. Methods

This section provides details on the method for automatically detecting dead wood and on the
scheme for evaluating the mapping results. The workflow is depicted in Figure 3. In summary,
the workflow begins with the processing of the UAS data into a point cloud using a SfM approach.
This point cloud is normalized with respect to the terrain using LiDAR data. Subsequently, all points
with a value less than –0.5 m or greater than 5 m were removed. The remaining points representing the
forest floor including CWD and tree stumps were converted to a raster data set which is the basis for
CWD mapping.

3.1. UAS Data Processing

3.1.1. Delineation of SfM Point Cloud

Using the SfM approach, a dense 3D point cloud was created based on the UAS images (Figure 3).
The orthomosaic (raster) of the forest floor was delineated later in a separate step (see Section 3.1.2).
The 3D reconstruction software Metashape 1.5.1 (Agisoft LLC) was used for SfM processing. The UAS
images were not modified before processing. Based on the accurate position information of the
UAS data, direct georeferencing was applied and no GCPs were used for processing. Accordingly,
the parameter for the position accuracy of the camera was set to 0.02 m (Table 3). The exact determination
of the camera positions (in the order of a few centimeters) ensures reliable internal calibration of the
camera parameters and thus prevents systematic errors in the height models created, such as doming
or bowling.

Table 3. UAS data-processing parameters (Agisoft Metashape 1.5.1). Camera parameters according
to Brown–Conrady model [59]. Abbreviations: f = focal length; cx, cy = principal point offset; k1, k2,
k3 = radial distortion coefficients; p1, p2 = tangential distortion coefficients.

Parameter Setting

Photo alignment accuracy High (original image resolution)
Image preselection Generic/Reference

Key point limit 40,000
Tie point limit 10,000

Adaptive camera model fitting Off
Camera positional accuracy 0.02 m

Tie point accuracy 1 pix
Optimize camera alignment Yes
Adapted camera parameters f, cx, cy, k1, k2, k3, p1, p2

Dense cloud quality Ultra high (original image resolution)
Depth filtering Mild

All images were aligned during processing and approximately 105,000 tie points were detected.
According to flight altitude and camera hardware, the nominal ground resolution was roughly
4.2 cm. The dense point cloud comprised circa 650 million points for the entire UAS-mission area and
410 million points for the Huss site, which corresponded to an average point density of 1424 pts/m2.
As mentioned above, five check points were installed to assess the geometric accuracy of the SfM-based
model. At all points, the deviation between check point coordinate and model coordinate was less
than 5 cm (measured separately for x, y, z). As shown in Table 4, the RMSE of the control points (x, y, z)
is below 3.5 cm. Further indications of the high geometric accuracy of the SfM model are the minor
camera positional error and the low effective reprojection error (Table 4).
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Table 4. UAS data-processing results and camera (Brown–Conrady) model [59].

Parameter Results

No. of tie points 104,768
Effective reprojection error 0.322748 pix

No. of points (dense cloud) entire UAS-mission area 648,079,840
No. of points (dense cloud) Huss site 409,880,892

No. of faces 59,870,149
f 3634.85

cx, cy 13.447, 23.1126
k1, k2, k3 0.000124181, −0.0191008, 0.0163026

p1, p2 0.000613276, 0.00116124
Average error of camera pos. (x, y, z) in mm 2.20, 1.32, 1.29

RMSE of check points (x, y, z) in cm 2.57, 3.37, 0.51

3.1.2. Generation of Canopy-Free Orthomosaic

The processing workflow for the generation of the canopy-free orthomosaic is provided in Figure 3.
Processing was carried out using LASTools version 181108 [60]. First, the SfM point cloud was
normalized for terrain using the ground points of the LiDAR dataset (LASTools command lasheight).
Accordingly, the height of the terrain surface was subtracted from the SfM model, thus creating a
surface model that only contains the object heights. Subsequently, all points featuring either a height
below –0.5 m or above 5.0 m were removed, which resulted in an average point density of 688 pts/m2

(Figure 3). The remaining points represent the forest floor, the lower part of tree trunks, and downed
CWD. The lower threshold of –0.5 m was chosen to remove invalid points. Since the pulled-out roots
of some windthrown trees cause cavities in the forest floor, a higher threshold would have resulted in
holes in the point cloud data. The upper threshold of 5 m excludes most branches while maintaining
the points representing downed CWD. To transfer this method to another area, this value needs to be
adjusted according to the forest structure. It is also necessary to consider that trees may not immediately
fall over completely, but first become caught in neighboring trees. In our study, all downed CWD was
below 5 m over ground. At this point it should be mentioned that supplementary data such as LiDAR
data are not necessarily required for terrain normalization. This operation can also be performed
using the generated SfM point cloud. However, this requires an accurate identification of the ground
points. Since this is not the focus of our study, we have used free LiDAR-based ground points as
described above.

In a last step, the canopy-free orthomosaic was created by rasterizing the point cloud using the
LASTools command lasgrid with the argument –rgb (to generate an RGB raster). The cell size of the
raster was set to 5 cm. After running lasgrid, some voids occurred underneath a few tree crowns.
These voids could be filled by using the argument –fill 10 (searching and filling voids in the grid with a
square search radius of 0.5 m). Figure 4 shows a subset of the final canopy-free orthomosaic, on the
basis of which the automatic CWD detection is carried out. For comparison, the same area is shown in
Figure 5 during leaves-on conditions. In Figure 4, foliage and dense canopy cover prevent the view of
the forest floor and dead wood might only be detected in glades.
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Figure 4. Subset of the canopy-free orthomosaic created and used for coarse wood debris (CWD) 

Figure 4. Subset of the canopy-free orthomosaic created and used for coarse wood debris (CWD)
mapping in this study. The subset is identical to the one shown in Figure 4. UAS imagery was acquired
during leaf-off season (acquisition date 24/03/2019). The dark dots represent the lower part of the stems
of standing trees. The varying color of the dead wood corresponds to different species and stages of
decomposition. Since some trunks have been lying on the forest floor for several years, advanced decay
is found. Such logs feature almost the same elevation as the surrounding ground and might not be
detected when only geometric properties are considered.

 

 

Figure 5. Subset of a UAS imagery-based orthomosaic (acquisition date 2019/09/19) for the Huss site.
Due to the summer drought, foliage coloring and defoliation has already started. Still, the leaves
prevent the view of the forest floor and dead wood can only be detected in canopy gaps.
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3.2. Collection of Reference Data for Accuracy Assessment

The obligations of the HNP administration include the monitoring of the natural forest
development in the park with a special geographic focus on the core zone, including the Huss
site. One of the tasks is the regular mapping of downed CWD. According to the specifications of
the park administration, a CWD featuring a minimum diameter of 0.15 m and a minimum length of
2 m needs to be inventoried. During a field campaign carried out by rangers of the HNP, CWD was
surveyed within the Huss site using RTK CDGNSS survey grade equipment. Similar to other
studies [7,11,13,15,16], challenging GNSS conditions prevented accurate positioning and the positional
accuracy was rather low (in the order of 10 m). Consequently, this data set was not appropriate to
validate the mapping results of our study. In order to validate the map product, CWD was manually
digitized for one quarter (north-eastern quadrant) of the Huss site which was representative of the
entire site. This approach has been used in many similar studies [11,14,16,18,25,26]. Figure 6 shows a
subsection of the validation area including digitized CWD.

The total length of downed CWD within the validation area fulfilling the specified criteria with
regard to minimum length and minimum diameter was 6.473 km, which corresponded to 225 dead
wood objects (essentially downed trees and several dismantled major branches).

 

wood objects (essentially downed trees and several dismantled major branches). 

 

Figure 6. Subset of the reference data used for validation. Since no suitable in-situ dead wood
measurements were available, the dead wood was digitized manually for a quarter of the Huss site.
A total of 225 dead wood objects met the criteria of the HNP administration.

3.3. Automized Dead Wood Detection Using a Raster Data-Based Object-Based Image Analysis
(OBIA) Approach

In our study, we developed a line recognition approach that is exclusively based on spectral
information. This approach utilizes the canopy-free orthomosaic as an input data set. For each of the
three image layers (blue, green, and red) a line extraction algorithm was applied (Table 5). Different
variables were defined describing the characteristics of the extracted linear structures (“Extract lines
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for RGB layers”), including line length (“length of the line in pixels”), line width (“width of the line in
pixels”), border width (“width of the homogeneous border along the extracted line”), and line direction
(“direction of the line in degrees”). In order to find lines in all possible directions, the line extraction
algorithm was embedded in a loop covering all angles from 0 to 179 degrees. The grey values of the
resulting layers (‘Blines’, ‘Glines’, and ‘Rlines’) were subsequently summed up utilizing the ‘layer
arithmetics’ algorithm to receive a final layer, highlighting lines which occur in each individual band.

Table 5. The eCognition processing parameters used for raster data-based dead wood mapping.

Method Function Subfunction/Value

Extract lines for RGB layers update line parameters

sv_line_length = 20
sv_line_width = 3

sv_border_width = 3
sv_angle = 0

loop: if sv_angle <= 179 then
(red channel)
sv_angle = 0

line extraction (
A: sv_angle,

W: sv_line_widthpx,
L: sv_line_lengthpx,

B: sv_border_widthpx)
‘lv_red’ => ‘Rlines’

loop: if sv_angle <= 179 then
(green channel)

sv_angle = 0

line extraction (
A: sv_angle,

W: sv_line_widthpx,
L: sv_line_lengthpx,

B: sv_border_widthpx)
‘lv_green’ => ‘Glines’

loop: if sv_angle <= 179 then
(blue channel)
sv_angle = 0

line extraction (
A: sv_angle,

W: sv_line_widthpx,
L: sv_line_lengthpx,

B: sv_border_widthpx)
‘lv_blue’ => ‘Blines’

layer arithmetics
(val “Blines+Glines+Rlines”, layer

lines [32Bit float])

Segment and classify lines creating ‘lvl’: unclassified <=30 < lines on lines

Reshaping
lines with Area <= 30 Pxl at lvl1:

loop: lines at lvl1:
lines at lvl1:

unclassified
grow into classified where lines > 0

merge region

Pixel-based growing
sv_number_pixels_growth =

‘sv_number_pixels_growth’ cycles:
lines at lvl1:

2
grow into all
merge region

After the generation of the lines layer, a threshold-based segmentation and classification (Table 5,
“Segment and classify lines”) was applied. This routine utilizes the line layer to create a new image
object level (“lvl1”) and to classify all resulting objects into line and non-line objects. A threshold of 30
for the grey value has been set after visually comparing the line layer to the RGB image. The generation
of image objects generally reduces noise effects and increases the information basis for further analyses
by adding shape, texture, and contextual features.

The resulting classification of linear structures was further adapted to meet certain object criteria
and to eliminate misclassifications (Table 5, “Reshaping”). Hence, linear objects smaller than a
minimum mapping unit of 30 pixels were removed. In order to ensure a connection between objects
belonging to the same dead wood cluster, classified segments were grown into other objects with
values larger than 0 in the line layer. Afterwards, all neighboring objects classified as dead wood were
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merged. In addition, the resulting objects are grown by two pixels in all directions to join parallel
linear segments which very likely belong to the same dead wood (Table 5, “Pixel-based growing”).

3.4. Accuracy Analysis

For assessing the accuracy of the downed CWD detection, two object-based approaches have been
considered: (a) length-based assessment and (b) count-based assessment. For (a) we measured the
length of correctly detected (true positive, tp length), missed out (false negative, fn length), and wrongly
detected (false positive, fp length) CWD objects (i.e., CWD meters). For (b) the number of correctly
detected, missed out, and wrongly detected CWD objects was determined (Figure 7).

 

 

−

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝)𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛)

Figure 7. Mapped and manually digitized CWD for a small subset of the Huss site to illustrate the
length-based accuracy analysis approach. Seven dead wood objects are shown (A–G). The length of
the overlap area of reference polygons and mapped polygons corresponding to the same CWD object
(solid blue lines) was defined as correctly detected (tp length). Missed out parts of CWD objects (solid
red lines) correspond to fn length, while dotted red lines refer to overestimation (fp length). The length
measurements were summed up for the entire validation area (one fourth of the Huss site).

The length measurements required for the first of the above assessments were performed manually.
Accordingly, correctly detected, missed out, and wrongly detected fractions of CWD objects were
digitized. To this end, the geographic information system (GIS) software QGIS 3.10.1 was used.
The length of the overlap between a CWD reference polygon and an automatically detected CWD
polygon was defined as a correctly detected length (Figure 7). Missed out and wrongly detected dead
wood was measured in the same way. Finally, the individual object-wise length measurements were
summed up for an overall assessment.

The count-based validation approach considers dead wood objects as entities (e.g., one log or one
dismantled major branch). The accuracy of detecting individual dead wood objects was based on the
following criteria. A dead wood object was tagged as correctly identified (tp) if >50% of its length was
correctly detected. All other object segments were either tagged fn (missed out) or fp (overdetection)
(Figure 7). For example, for object A in Figure 7, the length of the correctly recognized (tp) partition
of the object is less than 50% of the total length of this object. Consequently, this dead wood object
was tagged as missed out (fn). Except for object E, the remaining objects were considered as correctly
identified (tp). Following this evaluation scheme, the figures for precision and recall were computed
according to the following equations:

Precision = tp/(tp + f p) (1)
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Recall = tp/(tp + f n) (2)

4. Results

4.1. Coarse Wood Debris (CWD) Map

Figure 8 shows a map of the automatically detected downed CWD for the entire Huss site.
Although this illustration does not facilitate detailed discussions on the quality of the dead wood
detection, it is obvious that the OBIA approach is capable of identifying linear features. From a visual
perspective, there is no risk of confusion with non-elongated objects such as tree stumps and/or patches
covered with short green vegetation (dominant species: Allium ursinum). Even though some dead
wood objects are missed out, the false negative rate of the mapping result seems to be rather low.

 

low. 

 

Figure 8. CWD map of the entire Huss site including validation area. An initial visual assessment
suggests that the developed object-based image analysis (OBIA) approach is able to identify the
predominant part of the CWD.

Figure 9 provides a detailed view of the generated CWD map. It shows the same subset of the
Huss site as Figure 6 and reveals that the majority of the dead wood was detected within this map
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section. Moreover, as the presented mapping method focuses on the recognition of linear features,
it was possible to avoid confusion with trunks of standing trees. Still, some CWD objects were missed
out entirely and some false positive detections occur that can most likely be attributed to linear artefacts
in the canopy-free orthomosaic.

 

 

 

Figure 9. Subset of Figure 8 providing a detailed view of the mapped CWD. According to the map,
the majority of the dead wood was detected, even though the object shapes do not match the dead
wood boundaries precisely for all examples. Since the mapping method was designed to detect linear
features, confusion between CWD and standing stems was avoided.

4.2. Accuracy Analysis

As explained in Section 3.3, the accuracy of the dead wood mapping was estimated on the basis of
the total length of the downed CWD objects (in meters) as well as the number of dead wood objects
identified. According to the reference data set, the total length of dead wood in the validation area
(north-eastern quadrant of the Huss site, see Figure 8) is 6473 m, of which 4478 m were correctly
identified. A total of 1995 m was missed out (Table 6) and the overdetection amounts to 887 m which
corresponds to a precision of 83.5% and a recall of 69.2%.

Table 6. Statistics obtained from the accuracy assessment. For explanation see Section 3.4 and Figure 7.
Abbreviations: tp = true positive, fn = false negative, fp = false positive.

Assessment tp fn fp Precision Recall

Length-based 4478 1995 887 83.5 69.2
Count-based 180 45 76 70.3 80.0

Regarding the count-based CWD assessment, 180 out of 225 downed CWD objects were correctly
detected according to the criteria defined in Section 3.4. Furthermore, overall 45 objects were missed
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out (fn) while 76 false alarms (fp) occurred. The figures for precision and recall are 70.3 and 80.0
respectively (Table 6).

5. Discussion

To our knowledge, this is the first study investigating the usage of UAS-borne imagery for
automatic detection of downed CWD underneath a dense canopy of deciduous forest. Inoue et al. [26]
use a comparable UAS dataset in a deciduous forest to manually detect logs, but did not remove the
canopy. According to their report, the recognition of the logs was hindered due to occlusion caused by
tree crowns. In our study, the impact of occlusion was minimized due to the usage of a canopy-free
orthomosaic. Other publications using optical data for dead wood recognition either focused on snag
detection or on mapping of logs within large patches of storm-felled trees. Accordingly, the accuracies
reported in these papers might not be comparable to the validation results of our study.

LiDAR-based research aiming at downed CWD detection was carried out in several studies [7–9,
12,14–16,18]. The results of those publications dealing with direct mapping of individual dead wood
objects can be used as a benchmark to assess the performance of our approach. Nonetheless, it should
be mentioned that the majority of the reported LiDAR-based results employ high density point clouds
(>20 pts/m2) which are usually not (yet) generated in the framework of regular LiDAR acquisitions
commissioned by land surveying offices or similar authorities.

Overall, a comparison with studies reporting accuracy measures based on airborne LiDAR data
reveals that our results are among the better in terms of CWD detection rate (precision and recall;
see Section 1, [8]). This outcome is particularly promising when considering that we even included
small CWD objects with a minimum diameter of 15 cm. As in several other studies [11,14,16,18,25,26],
reference data were obtained from the same data set that was also used to classify downed CWD and a
simple, objective, and reproducible validation approach was developed.

Table 6 reveals certain discrepancies for the results obtained from the length- and count-based
assessments. While a considerable fraction of the total length of the dead wood was missed out,
the number of missed out dead wood objects was comparably small. This imbalance originates from
the definition of correctly identified CWD objects. Several times, branches of downed trees were
missed out using the OBIA approach. This results in an underestimation of the overall CWD length for
the validation site. Nonetheless, the correctly recognized fraction of the individual CWD object can be
above 50% and thus causes a true positive vote for this object.

The proposed method requires a sufficient proportion of gaps in the forest canopy to grant free
sight of the downed CWD objects. This requirement can be met if the forest is very sparse or if there are
large gaps in the forest canopy. Another option is to acquire the UAS data during leaf-off conditions,
as in this study. However, some patches of the forest floor might remain occluded by stems or other tree
elements which results in areas of no data. Thanks to the high percentage of image overlap (Table 2)
and the wide aperture angle of the used camera (Table 1), only six no data patches greater than 0.01 m2

occurred in this study. Their sizes range from 0.017 m2 to 0.887 m2. As the patches were rather small,
they were filled during the processing.

Without any doubt, no data areas are a source of uncertainty due to the potential omission of
CWD objects. The number and size of no data areas can further be reduced by more sophisticated
flight patterns including multiple flight directions, even greater image overlap, and off-nadir images.
However, passive optical data will fail over dense and non-deciduous forests. Under such conditions,
active systems such as LiDAR are superior.

Despite its limitations, one of the great advantages of UAS for CWD detection are their general
flexibility and the scalability of the imagery they produce. If there is the need for detecting even smaller
CWD objects or FWD, UAS missions can be executed at lower flight altitudes and UAS camera lenses
with smaller aperture angles can be employed to improve ground resolution. UAS campaigns can be
conducted at comparably low costs and at almost any time if they are not prevented by inappropriate
weather conditions.
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Another advantage of using UAS is the availability of high-resolution spectral and geometric
information. Although it is understood that the full potential of such UAS data can only be exploited
if both spectral and geometric information is integrated, this study only uses RGB orthomosaics for
CWD detection (yet, it should be emphasized again that without the geometric information of the
3D point cloud, the creation of a canopy-free mosaic would not have been possible). The rationale
behind this is to detect CWD of various stages of decay. In particular, heavily decomposed downed
CWD hardly stands out from the ground due to its height and thus might not be detectable using
the geometric information [13] only. At the same time, these linear structures are still visible in
RGB images. The integration of spectral and geometric information becomes particularly interesting
when it comes to CWD monitoring on a regular (e.g., yearly) basis. For such applications, geometric
(height) information are likely to improve the detection of net gains of CWD, especially for fresh dead
wood. This matter has to be further investigated in future research. Another research question to be
answered is to what extent the increment of the spectral information like the addition of a red-edge
or near infrared (NIR) channel can lead to an improvement of CDW detection. UAS equipped with
multispectral cameras are available and allow for the acquisition of the needed data.

In this study, an image analysis approach was developed and tested for CWD mapping. Despite
its simplicity, the mapping results and accuracy statistics can compete with those of previous studies.
The line detection algorithm used is likely to produce similar results for other study areas. Nevertheless,
other CWD mapping approaches based on RGB imagery might result in increased detection rates
and need to be tested in future studies. Machine learning, and in particular deep learning, is widely
used for various EO applications and has already been successfully demonstrated for the mapping
of storm-felled trees [32] and downed logs [25] using optical data. The major disadvantages of these
techniques are the need for massive amounts of training data and their limitations with respect to the
transferability to other sites with different characteristics. Nonetheless, it is likely that CWD recognition
will improve when recent machine-learning developments are taken into account [25].

Due to the mainly regular shapes of downed CWD, template matching approaches have already
been implemented for CWD mapping using optical [32] and airborne LiDAR data [7,15]. Depending
on the EO data, site characteristics, and CWD detection requirements (e.g., minimum size of CWD),
the templates need to be adjusted to optimize the detection rate. Thus, existing region- and data-adjusted
templates and template-based methods might not be transferable to other regions and data sets.

In summary, ultra high-resolution UAS imagery holds a large potential to reliably detect and
monitor small scale forest objects such as downed CWD. However, suitable methods need to be
(further) developed and adjusted in order to accurately extract these forest attributes from the wealth
of available information. Hence, it is without doubt that ultra high-resolution data will trigger the
development of novel as well as the refinement of existing image analysis methods.

6. Conclusions

This study aimed at investigating the potential of UAS imagery for mapping downed CWD in
a natural and dense deciduous forest. The developed OBIA approach utilized only spectral (RGB)
data for the actual dead wood classification. However, the 3D information contained in the acquired
UAS data set was still a key requirement for achieving the study objective. The reason for this is
that the available multi-view stereoscopic UAS imagery enabled the generation of 3D point clouds.
These permitted the separation of objects (or points of interest) according to their height above ground.
In this work, we took advantage of this possibility by extracting only ground and near-ground points
from the 3D data. This filtered point cloud was then used to delineate a canopy-free orthomosaic
containing only spectral information. The resulting RGB raster provided a detailed representation of
the forest floor and formed the very basis for detecting dead wood in the studied area.

A simple and transferable line detection method was developed to map downed CWD.
The approach led to expedient classification accuracies that are comparable to the results achieved in
previous studies using airborne high-density LiDAR point clouds.
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The data for this study were generated using an inexpensive RTK-capable UAS. For forest
applications in particular, these systems feature several advantages. One major benefit is the
dispensability of GCPs. RTK technology allows for very accurate measurements of the UAS position
that propagate to the acquired images and to the final 3D models created from the imagery. In this
way, change detection approaches without the effort of additional co-registration become possible [50].
This is of particular interest for monitoring purposes such as the observation of the development
of CWD. However, it is worth noting that the specific application of CWD change detection might
still require the co-registration of multi-temporal UAS orthomosaics due to the small size of dead
wood objects.

For once-off surveys aiming at the evaluation of the status-quo of downed CWD,
the centimeter-level positioning capability of RTK systems is not needed (if a centimeter to
decimeter-level location of the CWD objects is not mandatory). Conventional GNSS positional
accuracies and sophisticated flight patterns still permit the generation of sufficient 3D models with
negligible systematic errors [38,47]. Such models can be produced using images acquired with low-cost
off-the-shelf consumer drones.

As a final remark, CWD mapping in deciduous forests is feasible at low cost and with high flexibility.
Besides CWD mapping, several other domains do and will benefit from the very high-resolution and
inexpensive spectral and height data that can be acquired by UAS. These disciplines include, but are
not limited to, agriculture [61,62], geology [63], archeology [36], structural health monitoring [34],
topographic surveying [38], and general mapping [64]. Consequently, an extensive use of UAS in
agencies, businesses, and in the private domain (including citizen science) is expected.
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